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Neghbourhoods of points in a simple polyhedron P

P ⊂ int(M) is a spine if M \ P consists of:

I an open collar of ∂M, and

I possibly some open balls.

Examples: S2 ⊂ S3 and RP2 ⊂ RP3.
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The complexity c(M) of a compact 3-manifold M is the minimum
number of vertices in a simple spine of M [Matveev 1988].

I c(M#M ′) = c(M) + c(M ′)

I c(MS) ≤ c(M) for every incompressible S ⊂ M

I There are finitely many irreducible, ∂-irreducible, anannular
3-manifolds M with fixed c

I For such manifolds, if M 6= S3,RP3, L(3, 1) then c(M) is the
minimum number of tetrahedra in a (ideal) triangulation of M
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c 0 1 2 3 4 5 6 7 8 9 10 11 12

lens 3 2 3 6 10 20 36 72 136 272 528 1056 2080
other S3 . . 1 1 4 11 25 45 78 142 270 526 1038

R3 . . . . . . 6 . . . . . .
Nil . . . . . . 7 10 14 15 15 15 15

SL2R . . . . . . . 39 162 513 1416 3696 9324
Sol . . . . . . . 5 9 23 39 83 149

H2×R . . . . . . . . 2 . 8 4 24
H3 . . . . . . . . . 4 25 120 459

non-geo . . . . . . . 4 35 185 777 2921 10345

total 3 2 4 7 14 31 74 175 436 1154 3078 8421 23434

The closed irreducible orientable 3-manifolds of complexity ≤ 12.
From the atlas of 3-manifolds http://matlas.math.csu.ru

For the non-orientable ones with c ≤ 11, see Regina [Burton]
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Most graph manifolds have minimal spines of these types:

Lens spaces

Seifert manifolds
over S2 with three

singular fibres Graph manifolds

Proved for some infinite families [Jaco, Rubinstein, Tillmann 2009]
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Three families of Seifert manifolds have more efficient spines:

(
S2, (2,−1), (m+1, 1), (n+1, 1)

)
m, n ≥ 1

(
S2, (2,−1), (3, 1), (n + 5, 1)

)
n ≥ 0

The third family yields
(
S2, (2,−1), (3, 1), (p, q)

)
with p/q > 5.

[Martelli, Petronio 2000].
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How can we encode a four-manifold combinatorially?

Triangulation

0 ï1

2

1

1

0

Kirby diagram

No need to draw 3- and 4-handles (Laudenbach, Poenaru 1972)
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A shadow is a simple polyhedron P ⊂ int(M) such that:

I P is locally flat.

I M is obtained from a regular neighbourhood of P by adding
3- and 4-handles.

Every region f is equipped with a gleam in 1
2Z, and conversely the

gleams determine M (Turaev 1994).
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Every α ∈ H2(M,Z) may be represented as

α =
∑
f

αf f , αf ∈ Z

where the sum is over oriented regions f .

We have

〈α, β〉 =
∑
f

αf βf gleam(f ).

In particular, if Σ ⊂ P is a surface, then

Σ · Σ =
∑
f⊂Σ

gleam(f ).
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S4

CP2 S2 × S2

The shadow complexity c(M) of a compact 4-manifold M is the
minimum number of vertices in a simple spine of M. Hence

c(S4) = c(CP2) = c(S2 × S2) = 0.
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Connected sum:

0

c(M#M ′) ≤ c(M) + c(M ′).

Let P thicken to M. A shadow for the double DM of M:

c(DM) ≤ c(M).
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Theorem (M. 2011)

The closed orientable smooth four-manifolds M with c(M) = 0 are
precisely those of the type

M = W#hCP2

where W is the double of a thickening of a P with c(P) = 0.

Double of a 4-thickening of P ⇐⇒ Boundary of a 5-thickening of P{
5-thickenings of P

} w2←→ H2(P,Z2)

Corollary

The simply connected ones are:

S4, #hCP2#kCP
2
, #h(S2 × S2).
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Conjecture

The closed orientable smooth four-manifolds M with c(M) ≤ 1 are
precisely those of the type

M = W#hCP2

where W is the double of a thickening of a P with c(P) ≤ 1, or of
a P containing RP3.

We have c(RP3 × S1) = 1.

None of these four-manifolds is aspherical.
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Still missing:

I More elaborate simply connected manifolds. We have
c(K3) ≤ 14 [Costantino 2006].

I Aspherical manifolds.

I Manifolds of signature h 6= 0 that are not M#hCP2.

I Manifolds with intersection form nE8 ⊕mH.
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Let P thicken to M. Let SP be the singular part of P.

The
boundary ∂M decomposes into:

I A circle bundle at every region of P.

I A pair-of-pants bundle at every circle in SP.

I Cusped hyperbolic manifolds at the other components of SP.

We get a Minsky block over every vertex of P:

[Costantino, D. Thurston 2008]
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Goal: understand when ∂M ∼= #h(S2 × S1).

Use SnapPy [Weeks, Culler, Dunfield]
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